Multi-Objective History Matching with a Proxy Model for the Characterization of Production Performances at the Shale Gas Reservoir
نویسندگان
چکیده
This paper presents a fast, reliable multi-objective history-matching method based on proxy modeling to forecast the production performances of shale gas reservoirs for which all available post-hydraulic-fracturing production data, i.e., the daily gas rate and cumulative-production volume until the given date, are honored. The developed workflow consists of distance-based generalized sensitivity analysis (DGSA) to determine the spatiotemporal-parameter significance, fast marching method (FMM) as a proxy model, and a multi-objective evolutionary algorithm to integrate the dynamic data. The model validation confirms that the FMM is a sound surrogate model working within an error of approximately 2% for the estimated ultimate recovery (EUR), and it is 11 times faster than a full-reservoir simulation. The predictive accuracy on future production after matching 1.5-year production histories is assessed to examine the applicability of the proposed method. The DGSA determines the effective parameters with respect to the gas rate and the cumulative volume, including fracture permeability, fracture half-length, enhanced permeability in the stimulated reservoir volume, and average post-fracturing porosity. A comparison of the prediction accuracy for single-objective optimization shows that the proposed method accurately estimates the recoverable volume as well as the production profiles to within an error of 0.5%, while the single-objective consideration reveals the scale-dependency problem with lesser accuracy. The results of this study are useful to overcome the time-consuming effort of using a multi-objective evolutionary algorithm and full-scale reservoir simulation as well as to conduct a more-realistic prediction of the shale gas reserves and the corresponding production performances.
منابع مشابه
A Novel Assisted History Matching Workflow and its Application in a Full Field Reservoir Simulation Model
The significant increase in using reservoir simulation models poses significant challenges in the design and calibration of models. Moreover, conventional model calibration, history matching, is usually performed using a trial and error process of adjusting model parameters until a satisfactory match is obtained. In addition, history matching is an inverse problem, and hence it may have non-uni...
متن کاملFractured Reservoirs History Matching based on Proxy Model and Intelligent Optimization Algorithms
In this paper, a new robust approach based on Least Square Support Vector Machine (LSSVM) as a proxy model is used for an automatic fractured reservoir history matching. The proxy model is made to model the history match objective function (mismatch values) based on the history data of the field. This model is then used to minimize the objective function through Particle Swarm Optimization (...
متن کاملA Fully Integrated Approach for Better Determination of Fracture Parameters Using Streamline Simulation; A gas condensate reservoir case study in Iran
Many large oil and gas fields in the most productive world regions happen to be fractured. The exploration and development of these reservoirs is a true challenge for many operators. These difficulties are due to uncertainties in geological fracture properties such as aperture, length, connectivity and intensity distribution. To successfully address these challenges, it is paramount to im...
متن کاملAn Intelligent System’s Approach for Revitalization of Brown Fields using only Production Rate Data
State-of-the-art data analysis in production allows engineers to characterize reservoirs using production data. This saves companies large sums that should otherwise be spend on well testing and reservoir simulation and modeling. There are two shortcomings with today’s production data analysis: It needs bottom-hole or well-head pressure data in addition to data for rating reservoirs’ characteri...
متن کاملRock physics characterization of shale reservoirs: a case study
Unconventional resources are typically very complex to model, and the production from this type of reservoirs is influenced by such complexity in their microstructure. This microstructure complexity is normally reflected in their geophysical response, and makes them more difficult to interpret. Rock physics play an important role to resolve such complexity by integrating different subsurface di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017